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Abstract-- We present 3D reconstruction algorithms that

address fully 3D tomographic reconstruction for a septa-less,
stationary, and rectangular camera. The field of view (FOV)
encompasses the entire volume enclosed by detector modules
capable of measuring depth of interaction (DOI). The Filtered
Backprojection based algorithms incorporate DOI, accommo-
date irregular sampling, and minimize interpolation in the
data by defining lines of response between the measured inter-
action points. We use fixed-width, evenly spaced radial bins in
order to use the FFT, but use irregular angular sampling to
minimize the number of unnormalizable zero efficiency
sinogram bins. To address persisting low efficiency bins, we
perform 2D nearest neighbor radial smoothing, employ a semi-
iterative procedure to estimate the unsampled data, and mash
the “in plane” and the first oblique projections to reconstruct
the 2D image in the 3DRP algorithm. We present artifact free,
essentially spatially isotropic images of Monte Carlo data
with FWHM resolutions of 1.5 mm, 2.3 mm, and 3.1 mm at the
center, in the bulk, and in the corners of the FOV respectively.

I. INTRODUCTION

E are developing high-resolution PET cameras optimized
for breast and axillary node imaging [1]. To maximize

camera sensitivity, we a) pack the camera modules into a
rectangular shape to minimize gaps between them, b) use the
entire volume enclosed by the modules as the imaging field,
and c) operate the cameras in exclusively septa-less mode.
The geometry of the camera precludes motion during the
scan. We therefore measure the depth of interaction (DOI) to
increase the sampling rate of the camera and to reconstruct
isotropic images free of artifacts, especially radial elongation.
We measure the DOI by taking the ratio of the signals
received by photodetectors in front and at the back of the
scintillation crystals in the detector modules [2]. The DOI is
measured in discrete fractions of the length of the crystals,
modeling the crystals as being subdivided into 8 smaller
crystals or DOI “bins.”

We have previously presented results of 2D Fourier-based
reconstruction methods for Monte Carlo data from a
simulated camera [3], as well as 3D reconstructions based on
list-mode maximimum likelihood [4]. From our 2D studies,
we determined that we can nearly eliminate unnormalizable
zero efficiency sinogram bins (ZEBs) and obtain isotropic
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and artifact free images throughout the entire volume of the
field of view by using a) small and even radial bins to
exploit the high sampling rate of the camera, b) a variable-
width angular binning scheme, and c) a modified filtered-
backprojection technique that accommodates the irregularity
in the angular sampling. In addition, we found it necessary to
add a small random length to the measured DOI to make it a
continuous variable, and to use the Iterative Reprojection
Reconstruction (IRR) Algorithm [5] to address persisting
ZEBs.

In this paper, we present the extensions of our 2D Fourier-
based reconstruction algorithms into fully-3D reconstructions
of Monte Carlo data from simulated cameras. Our simulation
includes all of the camera’s 42 modules. As in our previous
paper, we present a simplified model, which we use primarily
to determine the appropriate sampling parameters, and a more
complete model, which includes the small gaps between
modules that are due to packaging issues, realistic energy
resolution in the crystals, and anticipated noise in the
detector electronics.

II. POLAR ACCEPTANCE AND ANGULAR SAMPLING USING A
SIMPLIFIED GEOMETRY

As in our previous paper, we employ Fourier-based
reconstruction methods based on 3DRP [6] with Colsher’s
Filter [7]. Fig. 1 shows a diagram of the simplified camera
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Fig. 1. Wire-frame diagram of the camera used to determine polar
acceptance and angular sampling parameters. The x, y and z axes are
oriented as shown. We measure the polar angle θ from the z-axis and the
azimuthal angle φ  counterclockwise from the x-axis. Units are in cm.
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and describes the coordinate system that we use to determine
the polar acceptance of the camera and the necessary angular
sampling. Each detector module consists of 64 detector
elements, each 3 mm x 3 mm x 30 mm. Fig. 2 shows
projections of a flood source that fills the field of view of the
camera. In many views the projections are truncated due to
the limited (and unusual) polar acceptance of the camera.

A. Polar Acceptance
As the primary benefit of 3D imaging is noise reduction,

we use signal-to-noise ratio (SNR) as a figure of merit to
determine how much polar acceptance is necessary.  We
measure SNR by taking the ratio of the mean voxel value
within a specified region of interest (ROI) to the variance of
the voxel values within the same ROI. For this purpose, we
simulate a flood phantom and calculate the mean and variance
of pixels at various locations of the reconstructed image as a
function of the polar acceptance. We determine the DOI by
measuring the light-sharing between the PD and the PMT
signals when a photon deposits energy in a crystal. The depth
is determined by calculating a depth estimator Γ,  defined as
the ratio of the PD signal and the sum of the PD and the
PMT, which varies linearly with the DOI. Γ  is assumed to
vary from 0.75 to 0.25 across the 30 mm crystal length.
From Γ, the depth is calculated and discretized into one of
eight DOI bins. Event generation and normalization are the
same as discussed in [3]. The normalization data contains an
order of magnitude more events than the reconstructed data.

Including DOI information, there are 172 million LORs
(unique crystal segment – crystal segment combinations).
Many of these LORs sample the same or nearly identical
regions of the detector volume, so we rebin (based on
proximity in s, θ, and φ) in order to reduce the data set size.

We use conservative reconstruction parameters so that we
can isolate the problem of determining polar acceptance. We
use coarse radial sampling of d/2, where d is the crystal
width (3 mm), to ensure that the only unpopulated bins are
those that are the result of truncation. This eliminates most

of the ZEBs that we encounter in our final algorithm, as they
are the result of fine (d/4) radial sampling. We initially use
coarse fixed-width (FW) [2] angular sampling in θ  and φ,
i.e. δθ = δφ = 0.050 (except δθπ/2  = δφ0 = δφπ  = 0.075),
but later use fine FW sampling in φ, i.e. δφ = 0.025 (except
δφ0 = δφπ  = 0.075) to remove the resulting streak artifacts.
All angular measurements are in units of radians. We use
standard 3DRP modified to accommodate the irregular
sampling in both θ and φ.  The reconstruction voxels are
cubes that are 1.50 mm on a side. 

We calculate the SNR in various locations of the FOV, in
particular, along the short and long edges, in the corners, at
the center, and in the bulk of FOV. Fig. 3 shows the SNR of
the reconstructed flood phantom. The ordinate shows the
SNR while the abscissa represents the number of θ projection
sets used in the reconstruction, i.e., an increment in the x-
axis represents an addition of another projection set in the
reconstruction as compared to the previous reconstruction.
Recall that each new set of projections is δθ = 0.050 from
the previous projection. Thus, the SNR for 2D reconstruction
(θ = π/2) is the data point at x = 1, the reconstruction that
included both the in-plane and the first off-plane events, i.e.
at |θ - π/2 | < 0.050, is the data point at x = 2, the
reconstruction that involves the in-plane events plus the
events at |θ - π/2 | < 0.100 is at x = 3, and so on. The data
point at x = 16 includes all the events. We use a 10x10
voxel2 region of interest (ROI) in each of the 48 planes to
calculate the SNR. Fig. 3 includes data from planes 0, 8, 16,
24, 32, and 40. Top left, top right, bottom left, and bottom
right, are the SNR result for voxels near the corner, along the
long side, in the bulk the camera, and at the center of the
camera, respectively. The relatively flat curves are those of
the bottom plane 0, which is expectedly not benefiting from
additional events with more polar angles. The rest of the
planes appear to benefit from more polar angle acceptance
until approximately the 10th projection (θ = π/2 + 0.500), at
which point the SNR either becomes flat or begins to

Fig. 2. Truncation pattern due to the rectangular shape of the camera.
Top left is (θ = π/2, φ = 0) projection of a flood phantom. φ increases by
0.625 radians with each succeeding image to the right, and θ  decreases by
0.125 radians with each succeeding image down. The scales vary from
image to image.
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Fig. 3. SNR versus number of polar acceptance angles, used to
determine the necessary polar acceptance for reconstruc tion. The top left,
top right, bottom left, and bottom right plots are the mean SNR for voxels
near the corner, along the long side, in the bulk the camera, and at the
center of the camera, respectively. In each plot, the SNR from planes 0, 8,
16, 24, 32, and 40 are shown.
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degrade. Thus we restrict the polar acceptance to ±10 cross
planes, which reduces the data set size to 68% of what it
would be if we included all possible (±24) cross planes.

B. Angular Sampling
We use the same azimuthal sampling that we used in our

2D reconstruction (δφ = 0.025), and so we only need to
determine the appropriate polar sampling. While a higher rate
of sampling results in a more accurate representation of the
object being imaged, we need to weigh the cost of higher
sampling in terms of larger data sets and longer
reconstruction times. We therefore compare using δθ  =
0.050 and δθ = 0.025. Because the DOI information does
not increase sampling at π/2, the polar angular width δθπ/2

and the azimuthal angular width δφ0 and δφπ  are 0.075, in
spite of the finer angular sampling for the rest of the
azimuthal projection angles.

We again use SNR as a figure of merit to distinguish
between fine and coarse polar sampling, and use the more
aggressive d/4 sampling in the following tests. This doubles
the number of planes to 96 as each voxel is now a 0.75 mm
cube. Fig. 4 shows the average SNR as a function of plane
number for 50x106 and 100x106 events using both coarse and
fine polar sampling. The results do not justify using fine
sampling in the polar angle, which effectively doubles the
size of the data and the reconstruction time.

We determine whether the polar sampling rate affects the
resolution of reconstructed point sources. We simulate point
sources in various locations of the FOV and measure their
FWHM and FWTM. The measured resolutions of point
sources sampled with fine polar sampling do not differ from
those of point sources sampled with course polar sampling.
The conclusion of these two tests is that we sacrifice neither
resolution nor image quality by coarsely sampling the polar
angle, i.e. using δθ = 0.050. Our final sampling choices
(δs = 0.75 mm, δθ = 0.050, δφ= 0.025, ±10 cross planes)
yield a data set size of 40 million bins.

C. Sample Reconstruction
Fig. 5 shows a sample reconstruction of a tube of constant

activity. We show four planes of the FOV, from the bottom

plane to midway up the FOV. We simulate 5x107

annihilations in both the cold background and hot ellipse,
and use a flood phantom of 5x109 events to normalize. While
the resolution is isotropic throughout the entire FOV, these
results indicate that the decreased sensitivity reduces the
signal to noise ratio for planes near the axial edge of the field
of view. The ellipse in Plane 0 is hard to discern and noise
blurs the boundary of the ellipse in Plane 2.

Fig. 6 shows the statistics of the reconstructions in Fig. 5.
The expected ratio of the mean voxel value between the
source and the background is 1:4.76. While the mean voxel
value within the phantom is uniform, the planes near the top
and the bottom of the FOV exhibit an underestimation in the
colder background, resulting in an artificially elevated ratio at
the extreme planes. The magnitude of this effect decreases as
the number of events used for normalization increases.
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Fig. 4.  Plane averaged SNR of voxels in a given plane. The squares

indicate results for 100x106 events while the circles indicate results for
50x106 events. Solid symbols represent coarse polar sampling while open
symbols represent fine polar sampling. The plots indicate that fine / coarse
polar sampling does not greatly impact the SNR of reconstructed images.

Fig. 5. Reconstruction of a tube of constant activity in a cool
background. In the upper row are planes at the axial limit of the camera,
in the lower row are planes near the camera center. The phantom is
easily discernable except at the extreme plane.
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Fig. 6.  Statistics of the sample reconstruction in Fig. 5. Shown are the
mean voxel values of the phantom and the background as a function of the
plane number. The expected ratio of the phantom activity to the
background activity is shown as the straight line in the bottom plot. The
apparent structure at the extreme planes is due to simplified normalization
and underestimation of the detected events in these planes.
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III. REALISTIC CAMERA

A. Simulation
Fig. 7 shows the geometry as we expect the camera to be

constructed. The one crystal wide gaps between the modules
are due to packing issues. As in the case of the 2D
reconstructions that we have discussed in our previous paper,
these gaps introduce a complication in the reconstruction in
that they are an additional source of ZEBs. The gaps also
result in the loss of approximately 1/3 of the events due to
the loss of active detector area.

We add more realistic effects in the current simulation.
Among these effects are Compton scatter in the detector
modules and noise in both the photodiode and the PMT. The
accepted energy window is 370 keV < E < 650 keV, which
has a 70% singles efficiency. The total efficiency of the
simulated detector for a uniform flood source is 9%. The PD
and PMT signals include noise contributions similar to those
observed in prototype detector modules [2], resulting in
5–10 mm FWHM DOI measurement resolution. Because the
measured DOI is the ratio of noisy signals in the
photodetectors, it is possible to “measure” events whose DOI
are outside the physical limits of the crystal. Such events are
assigned a depth of 0 or the length of the crystal, depending
of whether the calculate length is less than 0 or longer than
the crystal length, respectively.

Fig. 8 shows the projections of a simulated flood phantom
as observed by the realistic camera, similar to those shown
for an ideal camera in Fig. 2. The directions of the
projections are the same are in Fig. 2. The gaps between the
modules are evident in the large contiguous unsampled
regions in the projection planes. The close-spaced horizontal
bands in the top row are due to the assignment of the
interaction point to the center of the long axis of the crystal.
Note that there are ZEBs in virtually all projections.

B. Reconstructions and Results
The general approach that we take is to arrange our

sampling to minimize ZEBs and use IRR and reprojection to
estimate the data in the remaining unsampled (or poorly
sampled, as determined by the normalization) projection
bins. Thus, we first need to reconstruct the direct cross-plane
data sets (which we did in [3]), forward project this initial
reconstruction to fill in the unsampled bins, then reconstruct
the now complete data using Colsher’s filter.

Using d/4 sampling and defining interaction points to be
along the long axis of the crystal leave every fourth plane of
the FOV (at θ = π/2 )  unsampled. To address these ZEBs,
we perform angular mashing between the in-plane events and
the first off-plane events. This is similar to the combination
of 2D projections taken at different angles as was done with
the clam motion for the LBL PET600 camera [8]. Note that
if angular mashing is not performed, these unpopulated
planes will remain unfilled during the 2D reconstruction that
produces the initial estimate of the object in the FOV. The
IRR algorithm will thus fail for these planes.

Once the unsampled planes are estimated, we perform IRR
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Fig. 7.  Wire frame diagram of the realistic camera. The gaps between
the modules, which are due to packing issues, are readily seen. These gaps
result in more ZEBs in the projections, which need special attention for
artifact-free reconstructions.

Fig. 9.  Simulated sphere sources located at a central plane (plane 51).
The spheres are arranged where the distances between the sources are
four times their diameters (like a Derenzo Phantom). The diameters are
1.0 mm, 1.25 mm, 1.5 mm, and 2.0 mm.

Fig. 8.  Projections of a flood phantom using a simulation of the more
realistic camera. Note the increase in the number of ZEBs. The projection
directions corresponding to the different plots are the same as in Fig. 2.
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to estimate the rest of the ZEBs in the in-plane projections.
Our simulations show that approximately 5 iterations of IRR
with the positivity constraint are required before convergence
is attained. We determine this by comparing the current
projections with the subsequent projections after the
application of IRR.

Fig. 9 shows the reconstruction of a simulated Derenzo-
like resolution phantom in the near the central plane of the
FOV. Top right, top left, bottom left, and bottom right
quadrants are filled with 1.00 mm, 1.25 mm, 1.50 mm, and
2.00 mm diameter spheres respectively. The sphere sources
are arranged so that the distances between their centers are
four times their diameters. The “point sources” can easily be
distinguished from each other, even the small sources that are
near the periphery of the plane. If the same pattern is
simulated near the top or the bottom of the camera, however,
only the larger sources near the center of the plane are easily
recognizable. Table 1 shows the resolutions of point sources
at various locations within the FOV for planes near the center
and close to the bottom and the top.

We also simulate a Defrise Phantom in the FOV. The
bottom left quadrant of the FOV is filled with six 6.0 mm
alternating planes of constant and no activity. The
reconstruction is shown in Fig. 10. Shown are progressive
0.75 mm slices perpendicular to the x axis, starting from the
camera center (shown in top left) and ending at the rightmost

edge of the camera (bottom right). The individual planes are
readily seen and are uniform over nearly the entire camera
volume. Increased noise is observed in slice 145, which is at
the extreme edge (in the x- direction) of the camera. However,
the noise is confined to the region near plane 0, which is the
axial edge of the camera where the acceptance (and thus
number of events in the image) is low.

IV. CONCLUSIONS

In conclusion, we have developed fully 3D reconstruction
procedures for data from a PET camera with irregular
sampling and depth of interaction measurement capability.
We use evenly spaced 0.75 mm radial bins in the projection
data to exploit the high sampling rate of the camera as well
as to take advantage of fast and standard Fourier-based
reconstruction algorithms. We modify the standard 3D
reconstruction algorithm to accommodate the irregular
angular sampling. To address the ZEBs that result in the
discretization of the DOI, we add a small random number to
the measured DOI to make it approximate a continuous
variable. We address the rest of the ZEBs that are due to gaps
between modules by using the IRR algorithm that estimates
the missing information using a priori information from the
object. The reconstructed point sources and extended
phantoms are artifact-free. The point sources are essentially
isotropic and have FWHMs that vary from 1.50 mm to 3.0
mm depending on its location in the FOV. We do not
observe the adverse effects of radial elongation in the images.
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Table 1.  FWHM of point sources in various locations. The center
column contains the values for planes near the center of the FOV while the
right hand plot contains values for planes near the top and the bottom of the
FOV (3.6 cm from the central plane). Values have 0.75 mm uncertainty.

(X,Y) Location
(cm)

PSF FWHM
(FOV Center)

PSF FWHM
(FOV Edge)

(0.0, 0.0) 1.54 mm 1.91 mm

(5.4, 0.0) 2.50 mm 2.60 mm

(2.7, 1.6) 2.14 mm 2.45 mm

(0.0, 3.2) 2.63 mm 3.10 mm

(5.4, 3.2) 3.10 mm 3.18 mm

Fig. 10.  Simulated Defrise Phantom. The bottom left quadrant of the
FOV is filled with 6 alternating planes (6.0 mm thick) of constant and no
activity. Upper left image is a plane near the camera center, lower right is
at the axial edge.


